Abstract

The discharge properties and chemical reactions in plasma discharges using dielectric (alumina Al2O3) barrier discharge (DBD) reactors supported with Fe2O3 and TiO2 catalyst layers have been characterized. Ozone (O3) was used as a probe substance to monitor the chemical reactions driven by plasma discharges. The light emission from discharge gaps of the catalyst-supported DBD reactors due to plasma discharges was evaluated, using a monochromator equipped with a high dynamic range streak camera. It has been found that the catalyst layers of Fe2O3 and TiO2 do not obviously influence plasma discharges and O3 generation. Light emission from the discharge gaps of the catalyst-supported DBD reactors is different possibly due to the difference in light absorption and scattering by catalyst layers. The mechanism of catalysis effect on PM oxidative removal over Fe2O3 has been proposed, where Fe2O3 layer has the highest light absorption effect compared with that of TiO2 and Al2O3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.