Abstract

The purpose of this study was to characterize spatial and temporal variations of carbonyl compounds in Gumi city, where a number of large electronic-industrial complexes are located. Carbonyl samples were collected at five sites in the Gumi area: three industrial, one commercial, and one residential area. Sampling was carried out throughout a year from December 2003 to November 2004. At one industrial site, samples were taken every six days, while those of the other sites were for seven consecutive days in every season. Each sample was collected for 150 minutes and at intervals of three times a day (morning, afternoon, and evening). A total of 476 samples were analyzed to determine 15 carbonyl compounds by the USEPA TO-11A (DNPH-cartridge/HPLC) method. In general, acetaldehyde appeared to be the most abundant compound, followed by formaldehyde, and acetone+acrolein. Mean concentrations of acetaldehyde were two to three times higher in the industrial sites than in the other sites, with its maximum of 77.7 ppb. In contrast, ambient levels of formaldehyde did not show any significant difference between the industrial and non-industrial groups. Its concentrations peaked in summer probably due to the enhanced volatilization and photochemical reactivity. These results indicate significant emission sources of acetaldehyde in the Gumi industrial complexes. Mean concentrations of organic solvents (such as acetone+acrolein and methyl ethyl ketone) were also significantly high in industrial areas. In conclusion, major sources of carbonyl compounds, including acetaldehyde, are strongly associated with industrial activities in the Gumi city area.

Highlights

  • In a large urban area, volatile organic compounds (VOCs), including carbonyl compounds (CCs), can be emitted from a variety of emission sources such as motor vehicles, gas stations, laundries, cooking, and heating etc. [1,2,3,4]

  • This study aimed to characterize the behavior of CCs in the atmosphere of Gumi city, to investigate the major controlling factors on the distribution of CCs in the city, and to provide scientific information needed in mapping out an appropriate air quality management measure for the Gumi National Industrial Complex (GNIC), where large-scale electronic industries have been established

  • Acetone used as a solvent and methyl ethyl ketone were measured at 99% or over, demonstrating that such substances are widespread in the industrial area

Read more

Summary

Introduction

In a large urban area, volatile organic compounds (VOCs), including carbonyl compounds (CCs), can be emitted from a variety of emission sources such as motor vehicles, gas stations, laundries, cooking, and heating etc. [1,2,3,4]. The sources of VOCs in industrial areas are expected to be different from those in urban areas due to fugitive emissions of raw materials and organic solvents. The occurrence patterns of VOCs in a particular industrial area are often found to be different from those of normal urban areas [5]. The Gumi National Industrial Complex (GNIC) was established as the nation’s largest inland high technology export base by the Korean government’s export-oriented policy in the early 1970s. The major industrial sectors of the city were developed focusing on electronic and semiconductor industries. Textiles or household electronic appliances were dominant, which later gave way to semiconductor and digital industries (such as LCD/LED and cell phone manufacture) as leading sectors of the complexes [6]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.