Abstract

Carbonaceous particles are an important chemical component of atmospheric fine particles. In this study, a single particle aerosol mass spectrometer was used to continuously measure the carbonaceous particles in Chengdu, one of the megacities most affected by haze in China, from January 22 to March 3, 2021. During the observation period, the average mass concentration of PM2.5 was 62.3 ± 37.2 μg m-3, and the emissions from mobile sources were more prominent. Carbonaceous particles accounted for 68.6% of the total particles and could be classified into 10 categories, with elemental carbon (EC) mixed with sulfate (EC-S) particles making the highest contribution (33.1%). EC particles rich in secondary components and organic carbon (OC) particles rich in secondary component exhibited different diurnal variations, suggesting different sources and mixing mechanisms. From "excellent" to "polluted" days, the contributions of EC-S, EC mixed with sulfate and nitrate (EC-SN) and OC mixed with EC (OC-EC) particles increased by 9.8%, 4.5% and 6.6%, respectively, and thus these particles are key targets for future pollution control. The potential source contribution of the southwest area was stronger than that of other areas, and the potential contribution of regional transport to EC-related particles was stronger than to OC-related particles. Most particles were highly mixed with sulfate or nitrate, and the level of secondary mixing further enhanced as pollution worsened.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.