Abstract

The mass concentration of carbonaceous species, organic carbon (OC), and elemental carbon (EC) using a semicontinuous thermo-optical EC-OC analyzer, and black carbon (BC) using an Aethalometer were measured simultaneously at an urban mega city Delhi in Ganga basin from January 2011 to May 2012. The concentrations of OC, EC, and BC exhibit seasonal variability, and their concentrations were ∼2 times higher during winter (OC 38.1 ± 17.9 μg m(-3), EC 15.8 ± 7.3 μg m(-3), and BC 10.1 ± 5.3 μg m(-3)) compared to those in summer (OC 14.1 ± 4.3 μg m(-3), EC 7.5 ± 1.5 μg m(-3), and BC 4.9 ± 1.5 μg m(-3)). A significant correlation between OC and EC (R = 0.95, n = 232) indicate their common emission sources with relatively lower OC/EC ratio (range 1.0-3.6, mean 2.2 ± 0.5) suggests fossil fuel emission as a major source of carbonaceous aerosols over the station. On average, mass concentration of EC was found to be ∼38 % higher than BC during the study period. The measured absorption coefficient (babs) was significantly correlated with EC, suggesting EC as a major absorbing species in ambient aerosols at Delhi. Furthermore, the estimated mass absorption efficiency (σabs) values are similar during winter (5.0 ± 1.5 m(2) g(-1)) and summer (4.8 ± 2.8 m(2) g(-1)). Significantly high aerosol loading of carbonaceous species emphasize an urgent need to focus on air quality management and proper impact assessment on health perspective in these regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call