Abstract

An instrumented indentation technique was tested on three types of carbon nanotube/nanofiber-reinforced composites to investigate its applicability for measuring mechanical properties (elastic modulus and hardness). There was good agreement in the measured elastic modulus between the instrumented indentation and uniaxial tension tests for the case of a nanocomposite with a harder epoxy matrix material. In contrast, there was a considerable difference in elastic modulus between the two tests for the case of a nanocomposite with a softer polystyrene matrix material. A modified area function was then developed for the nanocomposite with the softer polystyrene matrix material, and this eliminated the difference in elastic modulus between the two test techniques. Thus, the instrumented indentation technique can be used for evaluating the mechanical properties of polymer matrix nanocomposites with an added advantage that a small sample size can be used. The instrumented indentation test was also utilized in the case of a patterned nanotube array-reinforced epoxy matrix composite. This clearly showed the modulus of the array nanocomposite improved considerably compared to that of the neat epoxy resin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.