Abstract

Amorphous carbohydrates may show glass transition and crystallization as a result of thermal or water plasticization. Proteins often affect the state transitions of carbohydrates in carbohydrate-protein systems. Water sorption behavior and effects of water on glass transition and crystallization in freeze-dried lactose, trehalose, lactose-casein (3: 1), lactose-soy protein isolate (3:1), trehalose-casein (3:1), and trehalose-soy protein isolate (3:1) systems were studied. Water sorption was determined gravimetrically as a function of time, and Brunauer-Emmett-Teller (BET) and Guggenheim-Anderson-de Boer (GAB) models were fitted to the experimental data. Glass transition temperature (T(g)) and instant crystallization temperature (T(ic)) in anhydrous and water plasticized systems were measured using differential scanning calorimetry (DSC). The Gordon-Taylor equation was used to model water content dependence of the T(g) values. The critical water content and water activity (a(w)) at 24 °C were calculated and crystallization of lactose and trehalose in the systems was followed at and above 0.54 a(w). Carbohydrate-protein systems showed higher amounts of sorbed water and less rapid sugar crystallization than pure sugars. A greater sugar crystallization delay was found in carbohydrate-casein systems than in carbohydrate-soy protein isolate systems. The T(g) and T(ic) values decreased with increasing water content and a(w). However, higher T(ic) values for lactose-protein systems were found than for lactose at the same a(w). Trehalose showed lower T(ic) value than lactose at 0.44 a(w) but no instant crystallization was measured below 0.44 a(w). State diagrams for each system are useful in selecting processing parameters and storage conditions in nutrient delivery applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.