Abstract

IntroductionThe bursa subacromialis (BS) provides the gliding mechanism of the shoulder and regenerates itself after surgical removal. Therefore, we explored the presence of mesenchymal stem cells (MSCs) within the human adult BS tissue and characterized the BS cells compared to MSCs from bone marrow (BMSCs) on a molecular level.MethodsBS cells were isolated by collagenase digest from BS tissues derived from patients with degenerative rotator cuff tears, and BMSCs were recovered by adherent culture from bone-marrow of patients with osteoarthritis of the hip. BS cells and BMSCs were compared upon their potential to proliferate and differentiate along chondrogenic, osteogenic and adipogenic lineages under specific culture conditions. Expression profiles of markers associated with mesenchymal phenotypes were comparatively evaluated by flow cytometry, immunohistochemistry, and whole genome array analyses.ResultsBS cells and BMSCs appeared mainly fibroblastic and revealed almost similar surface antigen expression profiles, which was CD44+, CD73+, CD90+, CD105+, CD106+, STRO-1+, CD14−, CD31−, CD34−, CD45−, CD144−. Array analyses revealed 1969 genes upregulated and 1184 genes downregulated in BS cells vs. BMSCs, indicating a high level of transcriptome similarity. After 3 weeks of differentiation culture, BS cells and BMSCs showed a similar strong chondrogenic, adipogenic and osteogenic potential, as shown by histological, immunohistochemical and RT-PCR analyses in contrast to the respective negative controls.ConclusionsOur in vitro characterizations show that BS cells fulfill all characteristics of mesenchymal stem cells, and therefore merit further attention for the development of improved therapies for various shoulder pathologies.

Highlights

  • The bursa subacromialis (BS) provides the gliding mechanism of the shoulder and regenerates itself after surgical removal

  • Proliferation and surface antigen expressions of BS cells and Bone marrow-derived Mesenchymal stem cell (MSC) (BMSC) Cells isolated from human BS as well as BMSCs have a similar spindle-shaped, fibroblast-like morphology (Fig. 1a), and formed colonies upon adherent culture (Fig. 1a; day 5)

  • The present study shows that cells isolated from the subacromial bursa of the shoulder meet the minimal criteria for their classification as MSCs [56]

Read more

Summary

Introduction

The bursa subacromialis (BS) provides the gliding mechanism of the shoulder and regenerates itself after surgical removal. With an incidence of about 30 %, degenerative tears of the rotator cuff emerge as one of the most common musculoskeletal diseases in the older population [1, 2] with significant socio-economic impact [3,4,5,6,7] It has been noted in the clinical area that localized reactions of the bursa subacromialis (BS) are evident in cases with rotator cuff tears [8], and that rotator cuff reconstructions reveal a lower success rate when surgical techniques are used that include radical resection of the BS [1]. The subacromial bursa was traditionally regarded as the main source of subacromial pain, adhesions and inflammatory response in rotator cuff disease This derives mainly from the concept of Duplay in the 19th century who influenced generations of orthopedic surgeons to remove the bursa during subacromial decompression and rotator cuff repair [11]. These ideas were supported by findings of increased levels of cytokines and nociceptors in subacromial impingement and rotator cuff tears [12,13,14]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.