Abstract

This is the first study on the hemolymph from a spider of the Loxosceles genus. These animals are responsible for a great number of envenomation cases worldwide. Several studies on Loxosceles venoms have been published, and the knowledge about the venom and its toxins is considerable, not only regarding the biological and biochemical characterization, but also regarding structural, genetic and phylogenetic approaches. However, the literature on Loxosceles hemolymph is nonexistent. The main goal of the present study was to characterize biochemically the hemolymph content, and especially, to identify its different hemocytes. Moreover, many papers have already shown molecules whose source is the hemolymph and their very interesting activities and biomedical applications, for example, antifungal and antibacterial activities. A 2D-SDS-PAGE of brown spider hemolymph showed approximately 111 spots for pH 3-10 and 150 spots for pH 4-7. A lectin-blotting assay showed that hemolymph carbohydrate residues were similar to those found in venom. Several types of TAG and DAG phospholipids were found in the hemolymph and characterized by HPTLC and mass spectrometry. Four different hemocytes were characterized in Loxosceles intermedia hemolymph: prohemocyte, plasmatocyte, granulocyte and adipohemocyte. This paper opens new possibilities on toxinology, studying an unknown biological material, and it characterizes a source of molecules with putative biotechnological applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.