Abstract
Seaweeds have received considerable attention as sources of dietary fiber and biomass for manufacturing valuable products. The major polysaccharides of red seaweeds include agar and porphyran. In a marine environment, marine bacteria utilize agar and porphyran through the agarase and porphyranase genes encoded in their genomes. Most of these enzymes identified and characterized so far originate from marine bacteria. Recently, Bacteroides plebeius, a human gut bacterium isolated from seaweed-eating Japanese individuals, was revealed to contain a polysaccharide utilization locus (PUL) targeting the porphyran and agarose of red seaweeds. For example, B. plebeius contains an endo-type β-agarase, BpGH16A, belonging to glycoside hydrolase family 16. BpGH16A cleaves the β-1,4-glycosidic linkages of agarose and produces neoagarooligosccharides from agarose. Since it is crucial to study the characteristics of BpGH16A to understand the depolymerization pathway of red seaweed polysaccharides by B. plebeius in the human gut and to industrially apply the enzyme for the depolymerization of agar, we characterized BpGH16A for the first time. According to our results, BpGH16A is an extracellular endo-type β-agarase with an optimal temperature of 40°C and an optimal pH of 7.0, which correspond to the temperature and pH of the human colon. BpGH16A depolymerizes agarose into neoagarotetraose (as the main product) and neoagarobiose (as the minor product). Thus, BpGH16A is suggested to be an important enzyme that initiates the depolymerization of red seaweed agarose or agar in the human gut by B. plebeius. KEY POINTS: • Bacteroides plebeius is a human gut bacterium isolated from seaweed-eating humans. • BpGH16A is an extracellular endo-type β-agarase with optimal conditions of 40°C and pH 7.0. • BpGH16A depolymerizes agarose into neoagarotetraose and neoagarobiose.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.