Abstract
Abstract To examine the impact of the heat generated by high-level radioactive waste on Boom Clay, two heater tests have been launched in the HADES underground research facility: the small-scale ATLAS Heater Test and the large-scale PRACLAY Heater Test. The major objective of these tests is to confirm and refine the thermo-hydro-mechanical (THM) constitutive models and associated parameter values obtained from a laboratory characterization programme. This paper presents the observations from the ATLAS and PRACLAY heater tests and the combined numerical modelling of these tests. To characterize the excavation damaged zone in the clay around these tests, a mechanical model with a strain-dependent elastic modulus is introduced for the Boom Clay. The consistency between the observations from laboratory tests and in-situ tests and the outcomes from the numerical models strengthen the confidence in our understanding of the THM behaviour of Boom Clay. They also enabled us to validate the mechanical model and produce a set of anisotropic THM property values for both intact and damaged Boom Clay.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.