Abstract

Conventional magnetic resonance imaging (MRI) uses T1-weighted and short-tau inversion recovery (STIR) sequences to characterize bone marrow in axial spondyloarthritis. However, quantification is restricted to estimating the extent of lesions because signal intensities are highly variable both within individuals and across patients and MRI scanners. This study evaluates the performance of quantitative T1 mapping for distinguishing different types of bone marrow lesions of the sacroiliac joints. In this prospective study, 62 patients underwent computed tomography (CT) and MRI of the sacroiliac joints including T1, STIR, and T1 mapping. Bone marrow lesions were characterized by three readers and assigned to one of four groups: sclerosis, osteitis, fat lesions, and mixed marrow lesions. Relaxation times on T1 maps were compared using generalized estimating equations and receiver operating characteristics (ROC) analysis. A total of 119 lesions were selected (sclerosis: 38, osteitis: 27, fat lesions: 40; mixed lesions: 14). T1 maps showed highly significant differences between the lesions with the lowest values for sclerosis (1516±220 ms), followed by osteitis (1909±75 ms), and fat lesions (2391±200 ms); p<0.001. T1 mapping differentiated lesions with areas under the ROC curve of 99% (sclerosis vs. osteitis) and 100% (other comparisons). T1 mapping allows accurate characterization of sclerosis, osteitis, and fat lesions at the sacroiliac joint but only for homogeneous, non-mixed lesions. Thus, further sequence development is needed before implementation in clinical routine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call