Abstract

In thermally enhanced oil recovery operations, particularly in steam-assisted gravity drainage (SAGD), boiler blowdown (BBD) containing high concentrations of dissolved organic matter (DOM), dissolved silica, and total dissolved solids (TDS) is generated. To develop efficient tools for managing this blowdown, a detailed understanding of its chemistry is required. In this study, BBD was evaporated to yield ∼66% condensate and ∼33% concentrate blowdown (CBD). Detailed characterization of the BBD and CBD water was conducted. The effect of acidification was also studied. The acidification coprecipitates the silica and DOM, with over 90% of the silica and over 40% of the DOM precipitating at pH 4. Ultrafiltration treatment was also examined, and a major fraction of the silica and DOM in the CBD was found to foul a 100 kDa ultrafiltration membrane in the pH range of 7.5 to 9. The analysis revealed that the dominant fouling mechanism was cake filtration, indicating the formation of a silica–DOM precipitate layer on the membrane surface. These studies can provide insight regarding management options for SAGD disposal water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.