Abstract

The ambitious new International Maritime Organization (IMO) strategy to reduce greenhouse gas emissions from ships will shape the future path towards the decarbonization of the fleet and will bring further ecological challenges. In order to replace the larger oil-based part of marine fuel with components from renewable sources, it is necessary to develop multi-component blends. In this work, biomethanol and biodiesel with two additives—dodecanol and 2-ethylhexyl nitrate—in 20 blends with marine diesel oil (MDO) were selected as alternative components to replace the pure marine diesel oil-based part of marine fuel. For this purpose, two base blends of diesel and biodiesel with and without additives were produced with biomethanol from 0 to 30% (volume basis). Of all the blends, the blends with 5% (volume basis) methanol had the best property profile in terms of density, kinematic viscosity, calorific value, cloud point, and cetane index according to the ISO 8217:2017 standard (DMB grade) in compliance with the IMO requirements for marine fuels. However, the flash point must be increased. The boiling behavior of the blends was also investigated. A cluster analysis was used to evaluate the similarity between the blends based on their different physical properties.

Highlights

  • Maritime transport is crucial for the global economy, as more than 80% of world trade is by sea [1], and the authors of [2] concluded that it is the most cost-effective way to transport goods around the world

  • Two base blends of diesel and biodiesel with and without additives were produced with biomethanol from 0 to 30%

  • The blends with 5% methanol had the best property profile in terms of density, kinematic viscosity, calorific value, cloud point, and cetane index according to the ISO 8217:2017 standard (DMB grade) in compliance with the International Maritime Organization (IMO) requirements for marine fuels

Read more

Summary

Introduction

Maritime transport is crucial for the global economy, as more than 80% of world trade is by sea [1], and the authors of [2] concluded that it is the most cost-effective way to transport goods around the world. Marine engines have a very high fuel consumption due to their size [3]. They have high particulate and NOx emissions [4]. World Health Organization estimates [5] give an alarming number of several million deaths per year from air pollution, which was confirmed by [6]. The reformulation of conventional diesel fuel is an effective means of reducing pollutants, but this is a difficult task due to the constant specific fuel consumption of diesel. There are complicated relationships between the molecular structure and the physical properties of diesel fuel [7]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.