Abstract

Abstract. Molecular composition and abundance of sugars and secondary organic aerosols (SOA) from biogenic sources over the East China Sea were investigated based on gas chromatography–mass spectrometry. Biogenic SOA tracers and sugars exhibit higher levels in the samples affected by continental air masses, demonstrating the terrestrial outflows of organic matter to the East China Sea. Glucose was the dominant sugar species (0.31–209, 18.8 ng m−3), followed by mannitol – a fungal spore tracer. All sugar compounds show generally higher average concentrations in the nighttime than in the daytime. 3-Methyl-1,2,3-butanetricarboxylic acid, one higher generation photooxidation tracer of monoterpene SOA, was found to be the most abundant species among measured biogenic SOA markers, suggesting the input of aged organic aerosols through long-range transport. Fungal-spore-derived organic carbon (OC) was the biggest contributor to total OC (0.03 %–19.8 %, 3.1 %), followed by sesquiterpene-derived secondary OC (SOC), biomass-burning-derived OC, and monoterpene- and isoprene-derived SOC. Larger carbon percentages of biogenic primary OCs and SOCs in total OC presented in the terrestrially influenced aerosols indicate significant contributions of continental aerosols through long-range transport. Positive matrix factorization results illustrate that the secondary nitrate and biogenic SOA, biomass burning, and fungal spores were the main sources of OC in marine aerosols over the East China Sea, again highlighting the importance of the Asian continent as a natural emitter of biogenic organic aerosols together with anthropogenic aerosols over the coastal marine atmosphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.