Abstract

Biofilms are major sites of carbon cycling in streams. Therefore, it is crucial to improve knowledge about biofilms' structure and microbial composition to understand their contribution in the self-purification of surface water. The present work intends to study biofilm formation in the presence of humic substances (HSs) as a carbon source. Two biofilm flowcells were operated in parallel; one with synthetic stream water, displaying a background carbon concentration of 1.26+/-0.84 mg L(-1), the other with added HSs and an overall carbon concentration of 9.68+/-1.00 mg L(-1). From the biofilms' results of culturable and total countable cells, it can be concluded that the presence of HSs did not significantly enhance the biofilm cell density. However, the biofilm formed in the presence of HSs presented slightly higher values of volatile suspended solids (VSS) and protein. One possible explanation for this result is that HSs adsorbed to the polymeric matrix of the biofilm and were included in the quantification of VSS and protein. The microbial composition of the biofilm with addition of HSs was characterized by the presence of bacteria belonging to beta-Proteobacteria, Cupriavidus metallidurans and several species of the genus Ralstonia were identified, and gamma-Proteobacteria, represented by Escherichia coli. In the biofilm formed without HSs addition beta-Proteobacteria, represented by the species Variovorax paradoxus, and bacteria belonging to the group Bacteroidetes were detected. In conclusion, the presence of HSs did not significantly enhance biofilm cell density but influenced the bacterial diversity in the biofilm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.