Abstract

Human skin fibroblasts were incubated with a fluorogenic xyloside, 4-methylumbelliferyl-beta-D-xyloside (Xyl-MU), in the presence or absence of tunicamycin. The xyloside-initiated glycosaminoglycans (GAG-MUs) were isolated from the culture medium, and their structures characterized. When the cells were incubated with Xyl-MU in the presence of 0.2 microg ml(-1) tunicamycin, the synthesis of GAG-MU was increased about three fold, compared with the control value in the absence of tunicamycin (cells exposed to Xyl-MU alone). The structures of GAG-MUs synthesized in the presence or absence of tunicamycin were compared by HPLC analysis using gel-filtration and ion-exchange columns, enzymatic digestion, and unsaturated disaccharide composition analysis. The data indicated that cells incubated with tunicamycin produced more undersulfated and shorter GAG-MUs than cells without tynicamycin. These results suggest that tunicamycin inhibits the elongation and sulfation of glycosaminoglycan (GAG) chains and that, as a result, GAG-MUs with shorter chains and undersulfated residues, but possessing a large number of GAG chains, are synthesized in the presence of tunicamycin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call