Abstract

An irreversible alpha-adrenergic blocker, benextramine [N,N'-bis(o-methoxybenzylamine-n-hexyl)-cysteamine] was used as a probe to study the possible interrelationship between alpha-adrenoceptors and the K+-activated Ca2+-channels. Benextramine, a tetraamine disulfide, acts irreversibly both on the alpha 1-adrenoceptor (t 1/2 = 3 min) and the alpha 2-adrenoceptors. These studies were carried out on rat brain synaptosomes, [3H]prazosin and [3H]clonidine binding. Benextramine blocked Ca2+ influx in rat brain synaptosomes under both depolarizing (75 mM KCl) and normal conditions (5 mM KCl). Its action at the channel is reversible with IC50 = 10 +/- 5 microM of the net Ca2+ influx. This makes benextramine a most potent Ca2+ blocker compared to verapamil or nicardipine (IC50 = 200 microM and 170 microM, respectively). Pretreatment of rat brain slices with benextramine gave a synaptosomal preparation which was devoid of either alpha 1-adrenergic or alpha 2-adrenergic binding capacity due to the irreversible binding of benextramine, but with an undisturbed Ca2+ influx. Thus, these results suggest that the alpha-adrenoceptors and the Ca2+-channels are independent of each other, and that full occupancy of the alpha-receptors does not affect the net calcium flux.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.