Abstract

Resist trimming is a technique that is often used to close the gap between line widths which can be repeatedly printed with currently available lithography tools and the desired transistor gate length. For the 65-nm node, the resist line width delivered at pattern is between 60 to 70 nm while the final transistor gate length is usually targeted between 35 to 45 nm. The 15 to 35 nm critical dimension (CD) difference can be bridged by resist trimming. Due to the stringent gate CD budget, a resist trimming process should ideally have the following characteristics: i) no degradation in CD uniformity; ii) no damage in pattern fidelity; iii) controllable CD trim rate with good linearity; and iv) no degradation in line edge roughness (LER) or line width roughness (LWR). Unfortunately, a realistic resist trimming process is never perfect. In particular, resist consumption and the resultant internal stress build-up during resist trimming can lead to resist line bending. The effect of bent resist lines is a higher post-etch CD and significantly degraded local CD uniformity (LCDU). In order to reduce resist bending CD errors (defined as the difference between the post-etch CD and the design CD due to resist bending after trimming) several useful procedures either in layout or in processes are presented. These procedures include: i) symmetrically aligning gates to contact pads and field connecting poly in the circuit layout; ii) enlarging the distance between contact pad (or field connecting poly) to active area within the limits of the design rules (DR) and silicon real estate; iii) adding assist features to the layout within the DR limits; iv) minimizing resist thickness; and v) applying special plasma cure before resist trim.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.