Abstract

Using nuclear magnetic resonance line broadening, longitudinal relaxation and magnetization transfer from water, we have measured the imino proton exchange times in the duplex form of the 10-mer d-CGCGATCGCG and in seven other deoxy-duplexes, as a function of the concentration of exchange catalysts, principally ammonia. All exchange times are catalyst dependent. Base-pair lifetimes are obtained by extrapolation to infinite concentration of ammonia. Lifetimes of internal base-pairs are in the range of milliseconds at 35 °C and ten times more at 0 °C. Lifetimes of neighboring pairs are different, hence base-pairs open one at a time. Lifetimes of d(G · C) are about three times longer than those of d(A · T). The nature of neighbors usually has little effect, but lifetime anomalies that may be related to sequence and/or structure have been observed. In contrast, there is no anomaly in the A · T base-pair lifetimes of d-CGCGA[TA] 5TCGCG, a model duplex of poly[d(A-T)] · poly[d(A-T)]. The d(A · T) lifetimes are comparable to those of r(A · U) that we reported previously. End effects on base-pair lifetimes are limited to two base-pairs. The low efficiency of exchange catalysts is ascribed to the small dissociation constant of the deoxy base-pairs, and helps to explain why exchange catalysis had been overlooked in the past. This resulted in a hundredfold overestimation of base-pair lifetimes. Cytosine amino protons have been studied in the duplex of d-CGm 5CGCG. Exchange from the closed base-pair is indicated. Hence, the use of an amino exchange rate to evaluate the base-pair dissociation constant would result in erroneous, overestimated values. Catalyzed imino proton exchange is at this time the safest and most powerful, if not the only probe of base-pair kinetics. We propose that the single base-pair opening event characterized here may be the only mode of base-pair disruption, at temperatures well below the melting transition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.