Abstract

Differences in DNA banding patterns, obtained by ribosomal intergenic spacer analysis (RISA), and nitrification were followed in a moving-bed biofilm reactor (MBBR) receiving municipal landfill leachate. Complete nitrification (> 99%) to nitrate was obtained in the two-stage MBBR system with an ammonium load of 1.09 g N-NH(4)/m(2).d. Increasing the ammonium load to 2.03 g N-NH(4)/m(2).d or more caused a decline in process efficiency to 70-86%. Moreover, at the highest ammonium load (3.76 g N-NH(4)/m(2).d), nitrite was the predominant product of nitrification. Community succession was evident in both compartments in response to changes in ammonium load. Non-metric multidimensional scaling (NMDS) supported by similarity analysis (ANOSIM) showed that microbial biofilm communities differed between compartments. The microbial biofilm was composed mainly of ammonia-oxidizing bacteria (AOB), with Nitrosomonas europeae and N. eutropha being most abundant. These results suggest that high ammonium concentrations select for particular AOB strains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.