Abstract

This protocol describes a method combining phase-contrast and fluorescence microscopy, Raman spectroscopy and optical tweezers to characterize the germination of single bacterial spores. The characterization consists of the following steps: (i) loading heat-activated dormant spores into a temperature-controlled microscope sample holder containing a germinant solution plus a nucleic acid stain; (ii) capturing a single spore with optical tweezers; (iii) simultaneously measuring phase-contrast images, Raman spectra and fluorescence images of the optically captured spore at 2- to 10-s intervals; and (iv) analyzing the acquired data for the loss of spore refractility, changes in spore-specific molecules (in particular, dipicolinic acid) and uptake of the nucleic acid stain. This information leads to precise correlations between various germination events, and takes 1-2 h to complete. The method can also be adapted to use multi-trap Raman spectroscopy or phase-contrast microscopy of spores adhered on a cover slip to simultaneously obtain germination parameters for multiple individual spores.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call