Abstract

<b>Background and Objective:</b> Bacterial Cellulose (BC) is an exopolysaccharide produced by bacteria with unique structural and mechanical properties and is highly pure compared to plant cellulose. This study aimed to produce novel bacterial cellulose using sago liquid waste substrate and evaluate its characteristics as a potential bioplastic.<b>Materials and Methods:</b> Production of BC by static batch fermentation was studied in sago liquid waste substrate usingAcetobacter xylinumLKN6. The BC structure was analyzed by Scanning Electron Microscopy (SEM) and Fourier Transform infrared spectroscopy (FT-IR). Mechanical properties were measured include tensile strength, elongation at break, elasticity (Young's modulus) and Water Holding Capacity (WHC). <b>Results:</b> The BC yield from sago liquid waste as a nutrients source was achieved 12.37 g L<sup>1</sup> and the highest BC yield 14.52 g L<sup>1</sup> in sago liquid waste medium with a sugar concentration of 10% (w/v) after 14 days fermentation period. The existence of bacterial cellulose is proven by FT-IR spectroscopy analysis based on the appearance of absorbance peaks, which are C-C bonding, C-O bonding, C-OH bonding and C-O-C bonding and represents the fingerprints of pure cellulose. The mechanical properties of BC from sago liquid waste were showed a tensile strength of 44.2-87.3 MPa, elongation at break of 4.8-5.8%, Young's Modulus of 0.86-1.64 GPa and water holding capacity of 85.9-98.6 g g<sup>1</sup>. <b>Conclusion:</b> The results suggest that sago liquid waste has great potential to use as a nutrient source in the production of bacterial cellulose and BC's prospect as the bioplastic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.