Abstract
To evaluate a rapid and cost-effective method for monitoring bacteria in ballast water, several marine bacterial isolates were characterized by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Since International Maritime Organization (IMO) regulations are concerned with the unintended transportation of pathogenic bacteria through ballast water, emphasis was placed on detecting species of Vibrio, enterococci and coliforms. Seawater samples collected from the North Sea were incubated in steel ballast tanks and the presence of potentially harmful species of Pseudomonas was also investigated. At the genus-level, the identification of thirty six isolates using MALDI-TOF MS produced similar results to those obtained by 16S rRNA gene sequencing. No pathogenic species were detected either by 16S rRNA gene analysis or by MALDI-TOF MS except for the opportunistically pathogenic bacterium Pseudomonas aeruginosa. In addition, in house software that calculated the correlation coefficient values (CCV) of the mass spectral raw data and their variation was developed and used to allow the rapid and efficient identification of marine bacteria in ballast water for the first time.
Highlights
Shipping moves over 80% of the world’s commodities and transfers approximately 3–5 billion tons of ballast water around the world every year
An objective of this study was the rapid detection of specific bacterial genera in ballast water
By comparing the 16S rRNA gene sequences of all four Vibrio isolates using the ClustalW2 alignment program, it was found that the differences were not significant enough to confidently differentiate them into separate species (Table 2). 16S rRNA gene comparison and basic local alignment search tool (BLAST) search implied that isolates S27 and S30 are similar to V. cyclitrophicus
Summary
Shipping moves over 80% of the world’s commodities and transfers approximately 3–5 billion tons of ballast water around the world every year. By comparing the 16S rRNA gene sequences of all four Vibrio isolates using the ClustalW2 alignment program, it was found that the differences were not significant enough to confidently differentiate them into separate species (Table 2). *MALDI-TOF mass spectra peak list for Serratia liquifaciens, Vibrio alginolyticus and Proteus vulgaris obtained in this study and from data previously published [30,37].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.