Abstract

Use of lead-containing piezoelectric components in electrical and electronic devices has been banned on the EU market since July 1st, 2006. Development of lead-free high performance piezoelectric materials to meet the strong market demand is therefore imperative. In this paper, we report a systematic study on the structural, dielectric and ferroelectric properties of one class of lead-free piezoelectric materials, Ba1-x-yCaxSryTiO3 (x = 0-0.4, and y = 0-0.2) ceramics, using techniques such as XRD, SEM, impedance analyzer, and ferroelectric analyzer. It is found that with increasing Sr concentration in Ba1-ySryTiO3 and Ba0.8-ySryCa0.2TiO3, the crystal structure transforms from tetragonal to cubic along with a decreased unit-cell volume. The microstructures of all samples prepared are uniform and dense with the grain size decreasing with Sr content. The Curie temperature decreases faster with Sr and Ca co-doped BaTiO3 than that of Sr or Ca singularly-doped one. Above Curie temperature, a tunability of 31.4% can be achieved at an applied voltage of 30 kV/cm for (Ba0.6Ca0.2Sr0.2TiO3). These properties promise Ba1-x-yCaxSryTiO3 system to be applicable in Pb-free tunable devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.