Abstract

AWAP IV constitutes the C-terminal domain of the larger 81 kDa protein AWAK [Avian WAP (whey acidic protein) domain- and Kunitz domain-containing], which is predicted, through conserved domain database searching, to contain at least four WAP domains and one Kunitz domain. RT (reverse transcription)-PCR analyses revealed mRNA transcripts encoding AWAP IV in the small intestinal and kidney tissues of 5-day-old Salmonella-infected chicks. Time-kill antimicrobial assays using rAWAP IV (recombinant AWAP IV) cell lysate indicated antimicrobial activity against gram-positive and gram-negative bacteria including Salmonella, Streptococcus and Staphylococcus spp. In addition, permeabilization of the outer membrane of Salmonella, as shown by the NPN (N-phenyl-1-naphthylamine) fluorescent probe assay, supported the ability of rAWAP IV to disrupt prokaryotic membranes. WAP domains can function as inhibitors of serine protease activity, and the microbial serine proteases subtilisin and proteinase K were inhibited by rAWAP IV cell lysate. However, at comparable concentrations, no significant inhibition of the mammalian serine protease elastase was observed. The combined broad-spectrum antibacterial and anti-protease activities of AWAP IV suggest a novel role in the avian innate defence mechanisms operating against microbial infection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.