Abstract
Aureusimines have been identified as potential virulence factors in Staphylococcus aureus. These pyrazinone secondary metabolites are produced by a nonribosomal peptide synthetase (NRPS) annotated as AusA. We report the overproduction of AusA as a 277 kDa soluble protein with A(1)-T(1)-C-A(2)-T(2)-R bimodular architecture. The substrate specificity of each adenylation (A) domain was initially probed using an ATP-pyrophosphate exchange assay with A-domain selective bisubstrate inhibitors to chemically knock out each companion A-domain. The activity of AusA was then reconstituted in vitro and shown to produce all naturally occurring aureusimines and non-natural pyrazinone products with k(cat) values ranging from 0.4 to 1.3 min(-1). Steady-state kinetic parameters were determined for all substrates and cofactors, providing the first comprehensive steady-state characterization of a NRPS employing a product formation assay. The K(M) values for the amino acids were up to 60-fold lower with the product formation assay than with the ATP-pyrophosphate exchange assay, most commonly used to assess A-domain substrate specificity. The C-terminal reductase (R) domain catalyzes reductive release of the dipeptidyl intermediate, leading to formation of an amino aldehyde that cyclizes to a dihydropyrazinone. We show oxidation to the final pyrazinone heterocycle is spontaneous. The activity and specificity of the R-domain was independently investigated using a NADPH consumption assay. AusA is a minimal autonomous two-module NRPS that represents an excellent model system for further kinetic and structural characterization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.