Abstract

Nanocomposite materials of the Au nanoparticles (Au/PDDA-G) and the bimetallic PtAu nanoparticles on poly-(diallyldimethylammonium chloride) (PDDA)-modified graphene sheets (PtAu/PDDA-G) were prepared with hydrothermal method at 90 °C for 24 h. The composite materials Au/PDDA-G and PtAu/PDDA-G were evaluated by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA) for exploring the structural characterization for the electrochemical catalysis. According to TEM results, the diameter of Au and bimetallic PtAu nanoparticles is about 20–50 and 5–10 nm, respectively. X-ray diffraction (XRD) results indicate that both of PtAu and Au nanoparticles exhibit the crystalline plane of (111), (200), (210), and (311). Furthermore, XRD data also show the 2°–3° difference between pristine graphene sheets and the PDDA-modified graphene sheets. For the catalytic activity tests of Au/PDDA-G and PtAu/PDDA-G, the mixture of 0.5 M aqueous H2SO4 and 0.5 M aqueous formic acid was used as model to evaluate the electrochemical characterizations. The catalytic activities of the novel bimetallic PtAu/graphene electrocatalyst would be anticipated to be superior to the previous electrocatalyst of the cubic Pt/graphene.

Highlights

  • Formic acid and methanol are potential in the conversions between chemical energy and electric energy as the chemical fuels

  • Researchers have dismissed formic acid as a practical fuel because of the high overpotential evidenced by experiments, indicative that the reaction starting from formic acid appeared to be too difficult

  • Pt-M alloy and bimetallic core-shell nanoparticles promised for electrocatalytic reactions have been developed [5,6,7], which could enhance the electrocatalytic abilities by high

Read more

Summary

Introduction

Formic acid and methanol are potential in the conversions between chemical energy and electric energy as the chemical fuels. The bimetallic Pt-based nanomaterials were introduced as anode catalysts for methanol and formic acid oxidation [1,2,3,4,5,6,7]. An alternative pathway leading to CO intermediate for the methanol or formic acid oxidation results in the poisoning of the active Pt surfaces with covalent CO bonding. To avoid this situation, two ways of improvement are considered usually to enhance the Pt activity with catalytic performance: (1) synthesis of the Pt-M bimetallic electrocatalysts and (2) addition of the carbon materials as support [9,10,11]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.