Abstract

Mussels are often used to monitor the aquatic systems for different ecological aims, as they are one of the best bioindicator animals. However, the characterization of biomarkers should be known before using them in environmental monitoring and toxicology studies. There is no study to our knowledge on the characterization of Na-ATPase and Ca-ATPase in tissues of freshwater mussel (Unio tigridis). Thus, this study was undertaken to characterize the optimum working conditions of Na-ATPase and Ca-ATPase in the gill of mussels, determining the highest levels of parameters (Na+, Mg2+, Ca2+, ATP, pH, temperature, enzyme amount, incubation time) to obtain maximum activity. The present study also aimed to investigate in vitro effects of ionic and nanoparticle (Al2O3, CuO) forms of aluminium and copper (0, 30, 90, 270 μg/L) on the activities of Na-ATPase and Ca-ATPase. Data showed that there was no ouabain-sensitive ATPase activity in the gill up to 10 mM ouabain concentrations. Na-ATPase and Ca-ATPase activities in the gill of control mussels were 5.124 ± 0.373 and 3.750 ± 0.211 μmol Pi/mg pro./h, respectively. Exposure to different concentrations of nanoparticles did not alter significantly (P > 0.05) the activities of Na-ATPase and Ca-ATPase in vitro, whereas the same concentrations of ionic aluminium and copper significantly decreased (P < 0.05) the enzyme activities. Data emphasized that there were different modes of action between ionic and nanoparticle forms of aluminium and copper. Data also suggested that in vivo studies should also be carried out to estimate better the effects of nanoparticle and ionic forms of metals on ATPases of U. tigridis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call