Abstract

Mitochondrial-encoded Cox1p, one of the three core subunits of yeast cytochrome oxidase (COX), was previously shown to associate with regulatory proteins and nuclear-encoded subunits into five high molecular weight complexes that were proposed to constitute the pathway for biogenesis of the Cox1p assembly module. One of the intermediates (D5) was inferred, but not directly shown to exist. In the present study mitochondria of strains expressing C-terminal-tagged subunits of COX that had not been looked at previously were pulse-labeled and analyzed for the presence of newly translated Cox1p in the immunoprecipitates. These studies revealed that of the eight nuclear-encoded COX subunits, only Cox5ap, Cox6p, and Cox8p are present in the Cox1p module. Both Cox5ap and Cox8p share interfaces with Cox1p in the holoenzyme, whereas Cox6p interacts indirectly through Cox5ap. These results suggest that the subunit contacts in the holoenzyme are probably established during biogenesis of the Cox1p module. To confirm the existence of the largest Cox1p intermediates (D5), which was only inferred previously, radiolabeled Cox1p with a C-terminal tag was expressed in COX-deficient pet111 and pet494 mutants. Pulldown assays confirmed the presence of newly translated Cox1p in D5, which in wild type cannot be demonstrated directly because of its co-migration with COX in the native electrophoresis system used to separate the intermediates. Jointly, the results of these analyses substantiate our previous proposal that COX is assembled from separate assembly modules, each containing one of the mitochondrial-translated core subunits in association with a unique set of nuclear-encoded subunits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.