Abstract

Aspartokinase (AK) is synergistically suppressed by Thr and Lys in the Corynebacterium metabolic pathway. Site-directed mutations can significantly improve AK inhibition. Our previous studies confirmed that sites 379 and 380 were important sites affecting enzyme activity, so we further screen the double mutants with excellent enzymatic properties from sites 379 and 380, and discuss the difference of enzyme activity between the double mutants and single mutants. Here, a double mutant, T379L/A380 M, with improved enzyme activity (2.74-fold) was obtained. Enzymatic property experiments showed that the optimum temperature of T379L/A380 M increased from 26 °C (recombinant Escherichia coli; WT-AK) to 45 °C and that the optimal pH decreased from 8.0 (WT-AK) to 7.5. Further, the half-life decreased from 4.5 to 3.32 h. These enzymatic properties were better than other mutant strains. Inhibition was diminished with low concentrations of Lys, and Lys + Thr presented an activating role. Subsequently, the reasons for the improved AK enzyme activity were illustrated with microscale thermophoresis (MST) experiments and molecular dynamic (MD) simulation by measuring ligand affinity and AK conformational changes. MST showed that the affinity between T379L/A380 M and Lys decreased, but the affinity between T379L/A380 M and Asp increased, promoting T379L/A380 M enzyme activity. MD experiments showed that T379L/A380 M enhanced the Asp-ATP affinity and catalyzed the transfer of residues S192 and D193 to Asp, promoting T379L/A380 M enzyme activity. However, the mutation did not cause fluctuations in the substrate Asp and ATP pockets. This might be why the enzyme activity was inferior to that of the single mutants (T379L and A380 M).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.