Abstract

Using the method of step heating thermography, this study seeks to detect and characterize the existence of stress in a beam sample of carbon epoxy composite with the stacking sequence of [08] aided by empirical and simulation approaches. The applied stress in the longitudinal direction of sample, while considering the Poisson’s ratio, changes the lateral dimensions of sample. Furthermore, it is shown that the thermal conductivity along the sample thickness varies as a result of stress existence. Accordingly, to obtain a relation between transverse thermal conductivity and longitudinal tensile stress, one should calculate and eliminate the effect of lateral deformation caused by stress. To this end, by combining the experimental and simulation results of composite sample under the action of different tensile loads, an equation describing the variation of thermal conductivity along the sample thickness with respect to applied stress is developed. Using the relation of transverse thermal conductivity variation in terms of applied stress, the finite element modeling is again carried out by rectifying the values of thermal conductivity. Simulation results are compared with experimental ones, indicating very good agreement between the two approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call