Abstract

Calerythrin, a four-EF-hand calcium-binding protein from Saccharopolyspora erythraea, exists in an equilibrium between ordered and less ordered states with slow exchange kinetics when deprived of Ca(2+) and at low temperatures, as observed by NMR. As the temperature is raised, signal dispersion in NMR spectra reduces, and intensity of near-UV CD bands decreases. Yet far-UV CD spectra indicate only a small decrease in the amount of secondary structure, and SAXS data show that no significant change occurs in the overall size and shape of the protein. Thus, at elevated temperatures, the equilibrium is shifted toward a state with characteristics of a molten globule. The fully structured state is reached by Ca(2+)-titration. Calcium first binds cooperatively to the C-terminal sites 3 and 4 and then to the N-terminal site 1, which is paired with an atypical, nonbinding site 2. EF-hand 2 still folds together with the C-terminal half of the protein, as deduced from the order of appearance of backbone amide cross peaks in the NMR spectra of partially Ca(2+)-saturated states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.