Abstract

Silicon-based antiresonant reflecting optical waveguide (ARROW) devices were studied by means of a scanning near-field optical microscope. Various structures such as a Y junction of a Mach-Zehnder interferometer and a directional optical coupler were characterized, showing the propagation of the light inside the devices simultaneously with the topography. Scattering on the splitting point of the Y junction was shown, as well as a partial coupling of the light between the two branches of the coupler. Measurements on the decay length of the evanescent field were also performed to study the use of the ARROW waveguide for sensor purposes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call