Abstract

Klebsiella are opportunistic pathogens that cause a wide spectrum of severe diseases. The aim of the present study was to investigate the impact of biofield treatment on multidrug resistant strain of K. oxytoca with respect to antibiogram pattern along with biochemical study and biotype number. Clinical lab isolate of K. oxytoca was divided into two groups i.e. control and treated. Control group remain untreated and treated group was subjected to Mr. Trivedi’s biofield. The analysis was done on day 10 after biofield treatment and compared with control group. Control and treated groups were analyzed for antimicrobial susceptibility pattern, minimum inhibitory concentration (MIC), biochemical reactions and biotype number using MicroScan Walk-Away® automated system. Experimental results showed the impact of biofield treatment on K. oxytoca and found alteration in both antimicrobial sensitivity and MIC values as compared with untreated group. Antimicrobial sensitivity of about 26.67% tested antimicrobials out of thirty was altered with respect to control. MIC results showed about 12.50% alterations in tested antimicrobials as compared to control. Biochemical study showed 24.24% alteration in tested biochemical reactions after biofield treatment. A significant change in biotype number (7713 5272) was identified after biofield treatment as compared to control (7775 4332). In treated group, a new species was identified as Kluyvera ascorbata, as compared to control, K. oxytoca. Study findings suggest that biofield treatment has a significant effect in altering the antimicrobial sensitivity, MIC values, biochemical reactions and biotype number of multidrug resistant strain of K. oxytoca. Biofield treatment could be applied to alter the antibiogram-resistogram pattern of antimicrobials.

Highlights

  • Klebsiella oxytoca (K. oxytoca) is a Gram-negative pathogen, cylindrical rod shaped, non-motile in nature, and belongs to Enterobacteriaceae family

  • Antimicrobial susceptibility test Results of antimicrobial sensitivity pattern and minimum inhibitory concentration (MIC) of K. oxytoca isolate are summarized in Tables 1 and 2 respectively

  • This study investigated the influence of biofield treatment on MDR strain of K. oxytoca with respect to antimicrobial sensitivity assay, and results found that biofield treatment has the potential to alter the sensitivity and MIC values of antimicrobials against biofield treated pathogen

Read more

Summary

Introduction

Klebsiella oxytoca (K. oxytoca) is a Gram-negative pathogen, cylindrical rod shaped, non-motile in nature, and belongs to Enterobacteriaceae family. K. oxytoca initially named as Aerobacter aerogens, which was identified as Klebsiella pneumoniae, but recent report classified it as K. oxytoca, on the basis of indole-positive test and ability to grow on melezitose, not in 3-hydroxybutyrate [2]. It is considered as an opportunistic pathogen, as most of the cases K. oxytoca-infected persons remain asymptomatic. K. oxytoca is recognized as important clinical pathogen in hospitalized patients causing major nosocomial infections in children and neonates [3] It is reported in many etiological human infections such as urinary tract infection, septic arthritis, bacteremia, septicemia, cholecystitis, soft tissue infections, and most recently in colicky neonates [1, 4,5,6,7]. An alternate approach called biofield treatment on pathogenic microorganism is reported to alter the antimicrobial susceptibility

Objectives
Methods
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.