Abstract
We have explored the covalent coupling of fatty acids to immunoglobulin G(IgG). N-hydroxysuccinimide ester of palmitic acid (NHSP) was used to couple palmitic acid to either a mouse monoclonal antibody to the major histocompatibility antigen, H-2 k, or goat antibody to the major glycoprotein of the Molony Leukemia Virus, gp-70. The reaction was characterized in terms of the time course, input ratio of NHSP to IgG, stoichiometry of the coupling, distribution of palmitic acid in the IgG subunits, and the antigen binding capacity of the coupled antibody. Incorporation of the fatty acid modified IgG into liposomal membranes using a detergent-dialysis method was studied as a function of extent of fatty acid coupling. Finally, the binding of IgG-coated liposomes with cells expressing proper antigens was characterized. The major conclusions were: (1) the optimal molar ratio of NHSP to IgG in the reaction was between 10 and 20, which yields about 4–5 palmitoyl chains per IgG molecule; (2) at this level of coupling, the antigen binding capacity of the IgG antibody decreased about 3–4-fold; (3) incorporation of the coupled antibody into unilamellar liposomes (about 1000 Å diameter) can be achieved with a deoxycholate-dialysis method with an optimal lipid-to-protein ratio of 10:1 (w/w); (4) there were about 48 IgG molecules incorporated per liposome under these conditions; (5) the apparent dissociation constant of the liposome-bound antibody under the optimal condition was about 6–7-fold higher than that of the native antibody; (6) binding of antibody to the target cells was accompanied by binding of liposomal lipids; both bindings could be blocked by pretreatment of cell with unmodified antibody.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.