Abstract

The synthetic androgen 17β-hydroxy-17α-[ 3H]methyl-4,9,11-estratrien-B-one (R1881) has been used as photoaffinity label to characterize androgen receptors in rat prostate, in a human transplantable prostatic adenocarcinoma (PC-82) and in calf uterus. Androgen receptor preparations were partially purified either via differential chromatography on 2',5'-ADP-Sepharose (rat prostate), via anion exchange fast protein liquid chromatography (rat prostate and PC-82) or via DNA-cellulose chromatography (calf uterus). Purification factors obtained with the three different methods were: 245, 75 and 40 respectively. Photolabelling of receptor preparations was performed via irradiation with a high pressure mercury lamp either before or after partial purification. Polyacrylamide gel electrophoresis under denaturing conditions showed that the DNA-binding form of the androgen receptor in calf uterus cytosol is a protein with a molecular mass of approx 95 kD. The covalent attachment of [ 3H]R1881 to the 95 kD protein could be completely suppressed by a 200-fold molar excess of dihydrotestosterone. In rat prostate cytosol an androgen receptor with a molecular mass of approx 50 kD could be photoaffinity labelled with R1881. A similar size was found for the androgen receptor in the human prostatic adenocarcinoma. Our results show that photoaffinity labelling of androgen receptors with [ 3H]R1881 as ligand can be applied for characterization of partial purified androgen receptor preparations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.