Abstract

We examined soils derived from volcanic ash of Kikai-Akahoya tephra on Yakushima Island, Japan, and classified them according to the Unified Soil Classification System of Japan, 2nd Approximation (USCSJ 2nd) and the World Reference Base for Soil Resources (WRB). Five pedons with horizons showing high (>20%) volcanic glass content were investigated. Soils developed under evergreen broad-leaved forests had high acid oxalate-extractable aluminum (Alo) and acid oxalate-extractable silicon (Sio) concentrations, and low acid oxalate-extractable iron (Fe)/dithionite-citrate-extractable Fe ratio. This indicates a warmer climate and less severe leaching conditions compared with soils developed under coniferous forests dominated by Cryptomeria japonica and grasslands dominated by Pseudosasa owatarii. All soils contained considerable amount of hydroxyl-Al-interlayered 2:1 clay minerals. The surface horizons of the pedons developed under the cool-temperate C. japonica forests contained smectite as a result of podzolization. However, the surface horizon of the pedon developed under cool-temperate P. owatarii grasslands did not contain smectite. All pedons belonged to the Kuroboku soils great group (USCSJ 2nd) and Andosols (WRB). Pedons in mountainous areas did not contain horizons with more than 6 g kg−1 of Sio and hence were classified as non-allophanic Andosols. In mountainous areas, it was observed that allophane formation was inhibited by Al leaching due to intense rainfall (>10,000 mm year−1); Al consumption due to the formation of the Al-humus complex; and Al incorporation into the interlayers of vermiculite. The low soil water pH [pH(H2O)] and leaching of silicon (Si) in mountainous areas would support these anti-allophanic effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call