Abstract

Underground mines are challenging environments for off-body wireless communication, since the signal propagation is majorly affected by small scale and large scale fading. The use of multiple antennas at the transmitter and the receiver sides is a known technique to combat fading and enhance capacity. In this paper, the channel parameters of a 2 × 2 Multiple-Input Multiple- Output (MIMO) off-body system are investigated in an underground gold mine and compared to the Single-Input Single-Output (SISO) system parameters. Measurement campaigns were conducted using monopole antennas at a center frequency of 2.45 GHz for both Line Of Sight (LOS) and None Line of Sight (NLOS) scenarios. The measured frequency responses are converted into impulse responses through an Inverse Fourier Transform (IFT). The results show that for a constant transmitted power, the path loss exponents at NLOS are smaller than their counterpart values at LOS. The channel capacity values decrease as the propagation distance increases and when the link is obstructed at NLOS. The RMS delay spread is generally increasing with distance for both LOS and NLOS situations. When a fixed Signal-to-Noise Ratio (SNR) is assumed, MIMO topologies improved the SISO capacity by roughly 8 bps/Hz. The channel characterization results demonstrate that the MIMO configurations provided a remarkable improvement in terms of capacity, coherence bandwidth, and time delay spread compared to the SISO topologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call