Abstract
Volatile benzenoids, including methyl p-methoxybenzoate, p-anisaldehyde, and p-anisalcohol, are responsible for the sweet and characteristic fragrance of loquat (Eriobotrya japonica, Rosaceae) flowers. Although the full pathway of volatile benzenoid synthesis has yet to be elucidated, their chemical structures suggest that O-methyltransferases are present in loquat and function in the methylation of the para-OH groups. In the present study, we used RNA-sequencing to identify four loquat genes (EjOMT1, EjOMT2, EjOMT3, and EjOMT4) that encode O-methyltransferases. We found that EjOMT1 was highly expressed in floral tissues, with an expression pattern that coincided with changes in intracellular volatile benzenoids during flower development. Recombinant EjOMT1 protein expressed in Escherichia coli showed the highest activity towards guaiacol with a Km value of 35μM. Furthermore, the protein also showed lesser activities towards guaiacol-type benzenoids including eugenol, isoeugenol, vanillin, and ferulic acid, in addition to much weaker activities towards catechol and p-hydroxybenzenoid derivatives. However, no activity was shown towards phenylpropenes without m-methoxy substitution, t-anol and chavicol. Taken together, our findings indicate that EjOMT1 has a broad substrate specificity towards compounds with both para-OH and meta-OCH3 groups, unlike previously characterized O-methyltransferases for volatile benzenoid/phenylpropanoid biosynthesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.