Abstract

Gelatinization temperature and apparent amylose content are key parameters used to describe the eating and cooking qualities of rice. Sequence variants of SSIIa and Waxy genes are important determinants of gelatinization temperature and apparent amylose content, respectively. A collection of Italian non-glutinous japonica rice accessions was characterized for sequence polymorphisms in SSIIa and Waxy genes, in comparison with non-Italian japonica and indica genotypes. For SSIIa two markers, SNP3 and SNP4, were used. A PCR amplification of multiple specific alleles protocol was developed for the identification of G/T polymorphism in 5′ splice site of first intron and A/C polymorphism in exon 6 of the Waxy gene. Based on simple allele-specific PCR, it can be proposed as a user-friendly, cost-effective tool for marker-assisted selection of amylose content. The collection was characterized also for the (CT)n repeats in exon 1 of the Waxy gene. The results showed that while SSIIa haplotypes were rather similar between Italian and non-Italian japonica rice, the Waxy gene haplotype T/A/(CT)18 was largely predominant in Italian accessions, other haplotypes, well represented in non-Italian japonica [T/A/(CT)19] and indica [e.g. G/C/(CT)20] genotypes, were present at lower frequency. Grain starch quality traits as apparent amylose content and RVA profile were also analysed. The In1/Ex6 SNP haplotypes of Wx gene were found to explain 79 % of variation in apparent amylose content, and 36, 22 and 25 %, of variation in the RVA parameters peak viscosity, breakdown and setback, respectively. The additional use of (CT)n repeats marker further improved the association of haplotypes with RVA parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.