Abstract

During a 2020 routine epidemiological investigation of carbapenem-resistant Enterobacterales at a local food market in Guangzhou, China, two Escherichia coli ST410 isolates coproducing NDM-5 and OXA-181 were obtained from environmental samples. Antimicrobial susceptibility testing, whole-genome sequencing, and conjugation assays were applied to identify their resistance phenotypes, phylogenetic relatedness, and genetic characteristics. Phylogenetic analysis showed that the two isolates were clonally related with only one core-genome single-nucleotide polymorphism (SNP) difference and clustered into a branch with 87 E. coli ST410 isolates deposited in GenBank. These 89 ST410 isolates were closely related (≤51 SNPs), and most were from humans in Southeast Asian countries (n = 47). A Vietnamese clinical isolate collected in 2017 showed the strongest epidemiological link (seven SNPs) to the two ST410 isolates detected in this study. Complete-genome analysis revealed that the carbapenem resistance determinants blaNDM-5 and blaOXA-181 were located on an IncF1:A1:B49-IncQ1 plasmid and IncX3 plasmid, respectively. Conjugation experiments confirmed that the IncX3 plasmid was self-transmissible while the IncF1:A1:B49-IncQ1 plasmid was nonconjugative. BLASTn analysis indicated that the two plasmids showed high similarity to other blaNDM-5-bearing IncF1:A1:B49-IncQ1 and blaOXA-181-bearing IncX3 plasmids from other countries. Altogether, the high similarity of the core genomes and plasmids between the ST410 isolates found in this study and those human source isolates from foreign countries suggested the clonal spread of E. coli ST410 strains and horizontal transmission of blaOXA-181-bearing IncX3 plasmids across Southeast Asian countries. Stringent sanitary management of food markets is important to prevent the dissemination of high-risk clones to the public. IMPORTANCE This is the first report of an Escherichia coli ST410 clone that coproduces NDM-5 and OXA-181 in China. The high similarity of the core genomes and plasmids between the ST410 isolates characterized in this study and human source isolates from foreign countries strongly suggests that this ST410 lineage is an international high-risk clone, highlighting the need for continuous global surveillance of ST410 clones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.