Abstract

Miniature ultrasound transducer arrays that can operate at frequencies above 30 MHz are needed for high-resolution medical imaging. One way to achieve this is with a kerfless structure based on 1-3 connectivity piezocomposite with the electrodes defined by photolithography. To achieve this, not only does the composite need planar, parallel, and smooth surfaces, but it must also be made with an epoxy filler compatible with the chemicals, heat, and vacuum required for photolithography. This paper reports full characterization of an epoxy suitable for fine-scale kerfless array fabrication, including photolithographic processing. Material properties have been investigated as a function of cure temperature and for compatibility with solvents. By increasing the cure temperature, the crosslinking between the epoxy and the hardener in- creases, resulting in a higher glass transition temperature. The cured epoxy consequently has better resistance to both heat and solvents. An elevated cure temperature, near 100°C, is required to optimize material properties for photolithography on 1-3 piezocomposites. The acoustic properties of the epoxy have also been studied. These are similar to other epoxies used in piezocomposite fabrication and no significant changes have been observed for the different cure temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.