Abstract

A cardiac culture cell line (AT-1) recently has been generated from transgenic mice. Initial studies have yielded opposing results as to the nature of the major repolarizing current(s) in these cells. The present study describes the ion selectivity, voltage dependence, and E4031 sensitivity of the major time-dependent outward current present in AT-1 cells. In addition, we have determined whether an outward current with the characteristics we observed could be capable of modulating action potential duration in a frequency-dependent manner (for stimulation cycle lengths between 250 and 1000 msec). Action potentials and membrane currents were recorded from nonconfluent cultures of quiescent AT-1 cells using the "perforated patch" technique. AT-1 cells showed a round appearance 1 or 2 days after plating. An E4031-insensitive transient outward current seemed to be absent in these cells. The main time-dependent outward current was a rapidly activating and rectifying potassium current with properties similar to those of IKr. Most of the potassium current was sensitive to the benzenesulfonamide E4031 (5 microM). The same concentration of E4031 led to a 38% increase in action potential duration. Action potential parameters were independent of the stimulation cycle length within the range of 250 to 1000 msec, thus suggesting that the membrane currents involved in the action potential of AT-1 cells are completely reset within a diastolic interval of approximately 150 msec. AT-1 cells present a unique electrophysiologic phenotype, which is clearly different from that reported for freshly dissociated adult atrial or ventricular myocytes from other species. AT-1 cells may be a good model to study IKr, since there seems to be minimal contamination by other outward conductances (such as IKs). In addition, the feasibility of culturing AT-1 cells provides us with a system where electrophysiologic experiments on IKr currents could be combined with biochemical or molecular biological studies requiring significant periods of incubation in a cell culture system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call