Abstract

We report that Chlorella virus PBCV-1 encodes a 298-amino-acid ATP-dependent DNA ligase. The PBCV-1 enzyme is the smallest member of the covalent nucleotidyl transferase superfamily, which includes the ATP-dependent polynucleotide ligases and the GTP-dependent RNA capping enzymes. The specificity of PBCV-1 DNA ligase was investigated by using purified recombinant protein. The enzyme catalyzed efficient strand joining on a singly nicked DNA in the presence of magnesium and ATP (Km, 75 microM). Other nucleoside triphosphates or deoxynucleoside triphosphates could not substitute for ATP. PBCV-1 ligase was unable to ligate across a 2-nucleotide gap and ligated poorly across a 1-nucleotide gap. A native gel mobility shift assay showed that PBCV-1 DNA ligase discriminated between nicked and gapped DNAs at the substrate-binding step. These findings underscore the importance of a properly positioned 3' OH acceptor terminus in substrate recognition and reaction chemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.