Abstract
The characterization of an amplified piezoelectric actuator (APA) as a new axial scanning method for multiple-reference optical coherence tomography (MR-OCT) is described. MR-OCT is a compact optical imaging device based on a recirculating reference-arm-scanning optical delay using a partial mirror that can enhance the imaging depth range by more than 10 times the reference mirror's scanning amplitude. The scanning amplitude of the used APA was varied between 30μm and 250μm, depending on the scanning frequency of between 0.8kHz and 1.2kHz. A silver-coated miniature mirror was attached to the APA via ultraviolet-cured optical adhesive, and the light source was a super-luminescent diode with 1310nm center wavelength and 56nm bandwidth. The sensitivity was measured with and without the partial mirror in the reference delay line as a function of scan speed, frequency, and range, therefore providing results for MR-OCT and TD-OCT modes. It was found that the APA provides more than twice the mechanical scanning range compared to other opto-mechanic actuators, but results indicate degradation of signal-to-noise ratio and sensitivity at larger imaging depths. In conjunction with MR-OCT, the scan range of maximum 200μm can be enhanced up to 1-1.5mm by using a reduced amount of orders of reflections, which could be of interest to increase sensitivity in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.