Abstract

Abstract Ammonia decomposition was studied in a multifunctional catalytic membrane reactor filled with Ruthenium catalyst and equipped with palladium-coated membranes. To characterize the system we measured NH3 conversion, H2 yield and its partial pressure, the internal and external temperatures of the reactor shell and the electric consumption under several NH3 flow and pressure conditions. Experimental results showed that the combined effect of Ruthenium catalyst and palladium membranes allowed the reaction to reach the equilibrium in all the conditions we tested. At 450 °C the ammonia conversion resulted the most stationary, while at 7 bar the hydrogen yield was almost independent of both the ammonia flow and temperature. In addition, the experimental system used in this work showed high values of NH3 conversion and H2 permeation also without heating the ammonia tank and therefore renouncing to control the feeding gas pressure. When ultra-pure hydrogen is needed at a distal site, a reactor like this can be considered for in situ hydrogen production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.