Abstract
To study the functional and structural roles of the epsilon subunit in adult muscle acetylcholine receptor (AChR), we have co-expressed the alpha and epsilon subunits of the mouse receptor in transfected fibroblasts. Ligand binding studies suggest that association of epsilon with alpha subunit results in a lower association rate constant for 125I-labeled alpha-bungarotoxin binding than that of the unassembled alpha subunit, approaching that for toxin binding to the AChR. Furthermore, alpha epsilon complexes contain high affinity binding sites for competitive antagonists and agonists not present in the unassembled alpha subunit, but similar to one of the two nonequivalent binding sites in the adult AChR. Structural analysis of alpha epsilon complexes by sucrose gradient velocity centrifugation suggests that some of the complexes formed are trimers or tetramers of alpha and epsilon subunits. Comparison of these data with those previously obtained for alpha gamma complexes suggests that gamma and epsilon have homologous functional roles and identical structural positions in the fetal and adult AChRs, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.