Abstract

In order to reduce the impact of nitrogen pollution and to increase the agronomic value of plant wastes to be reused as organic fertilizer, we have investigated the removal of ammonium from aqueous solutions onto cactus leave fibers (CLF), and the mechanisms involved in the retention of ammonium at CLF surface. The results showed that ammonium retention onto these fibers occurred for a wide pH (6–10) and temperature ranges (20–60°C) and the biosorption potential of CLF increased with temperature from 1.4 to 2.3mgg−1 for initial concentration of 50mgL−1. The modeling studies showed that the ammonium biosorption was well described by the pseudo-second-order model, predicting therefore, chemisorption interactions-type at earlier stages and by intraparticle diffusion at later stages. Biosorption is governed by film diffusion process at higher concentrations and by particle diffusion process at higher temperatures. The surface of CLF determined by SEM revealed the presence of cracks and cavities which may allow the intraparticle diffusion and the ion exchange processes. Moreover, FTIR and EDX analysis before and after ammonium retention showed that the main mechanisms involved in the removal of ammonium were the ionic exchange by calcium ions as well as H+ and the complexation with carboxylic, alcoholic and phenolic groups.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.