Abstract

The present study was conducted at a University campus of Agra to determine concentrations of crustal and trace elements in submicron mode (PM1) particles to reveal sources and detrimental effects of PM1-bound metals (Cr, Cd, Mn, Zn, As, Co, Pb, Cu and Ni) in samples collected in the foggy (1 December 2016-17 January 2017) and non-foggy periods (1 April 2016-30 June 2016). Samples were collected twice a week on preweighed quartz fibre filters (QM-A 47mm) for 24h using Envirotech APM 577 (flow rate 10lmin-1). Mass concentration of PM1 was 135.0 ± 28.2 and 54.0 ± 18.5µg/m3 during foggy and non-foggy period, respectively; crustal and trace elements were 13 and 4% during foggy and 11 and 3% in the non-foggy period. Source identification by PCA (principal component analysis) suggested that biomass burning and coal combustion was the prominent sources in foggy period followed by resuspended soil dust, industrial and vehicular emission, whereas in non-foggy period resuspended soil dust was dominant followed by biomass burning and coal combustion, industrial and vehicular emissions. In both episodes, Mn has the highest Hq (hazard quotient) value and Cr has the highest IlcR (Incremental Lifetime Cancer Risk) value for both adults and children. In vitro cytotoxicity impact on macrophage (J774) cells was also tested using MTT assay which revealed decreasing cell viability with increasing particle mass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.