Abstract

In recent years, geostatistical modeling has been used to inform air pollution health studies. In this study, distributions of daily ambient concentrations were modeled over space and time for 12 air pollutants. Simulated pollutant fields were produced for a 6-year time period over the 20-county metropolitan Atlanta area using the Stanford Geostatistical Modeling Software (SGeMS). These simulations incorporate the temporal and spatial autocorrelation structure of ambient pollutants, as well as season and day-of-week temporal and spatial trends; these fields were considered to be the true ambient pollutant fields for the purposes of the simulations that followed. Simulated monitor data at the locations of actual monitors were then generated that contain error representative of instrument imprecision. From the simulated monitor data, four exposure metrics were calculated: central monitor and unweighted, population-weighted, and area-weighted averages. For each metric, the amount and type of error relative to the simulated pollutant fields are characterized and the impact of error on an epidemiologic time-series analysis is predicted. The amount of error, as indicated by a lack of spatial autocorrelation, is greater for primary pollutants than for secondary pollutants and is only moderately reduced by averaging across monitors; more error will result in less statistical power in the epidemiologic analysis. The type of error, as indicated by the correlations of error with the monitor data and with the true ambient concentration, varies with exposure metric, with error in the central monitor metric more of the classical type (i.e., independent of the monitor data) and error in the spatial average metrics more of the Berkson type (i.e., independent of the true ambient concentration). Error type will affect the bias in the health risk estimate, with bias toward the null and away from the null predicted depending on the exposure metric; population-weighting yielded the least bias.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call